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Basics of Artificial Intelligence (AI) Modeling
Rodney C. Richie, MD, DBIM, FACP, FCCP

AI with machine learning and its subset deep learning are revolu-
tionizing research into the morbidity and mortality of diseases and
conditions. The major models of AI are discussed, with an attempt
to simplify what many acknowledge as agnostic processing of vast
amounts of data to arrive at a conclusion or diagnosis. Such mod-
els include convolutional neural networks, artificial neural net-
works, recurrent neural networks, generative adversarial networks,
local interpretable model-agnostic explanations, shapley additive
explanations, counterfactual explanations, multi-armed bandit
models, deep-Q-learning models, fusion models, federated learn-
ing, predictive modeling, and disease outbreak prediction. Topics
are well-referenced for further research.
Methodology: A key-word search of artificial intelligence, artificial
intelligence in medicine, and artificial intelligence models was
done in PubMed and Google Scholar yielded more than 100 arti-
cles that were reviewed for summation in this article.
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INTRODUCTION

New technologies are transforming medicine,
and this revolution starts with data: health
data, clinical images, genome sequences, data
on prescribed therapies and results obtained,
and any other sources of data that can be imag-
ined. The origins of AI originated with Alan
Turing and John Haugland in their epic The
Turing Test: Verbal Behavior as the Hallmark of
Intelligence in 1950. The huge size of comput-
ers and cost of storage limited initial rapid
growth of this field, but with time and tech-
nological advances, machine learning (ML),
where a computer program’s performance
improves with experience with respect to
some class of tasks and performance mea-
sures, incrementally increased.
ML’s capacity to deal with data allows

computer scientists to develop algorithms
and models that learn from data – to ana-
lyze, evaluate, and make predictions or

decisions based on learning and data char-
acteristics.1 The capacity of such systems
for advanced problem solving is generally
termed artificial intelligence (AI).
A subset of ML is deep learning (DL),

which differs from the larger class of ML by
mimicking the functioning of the human
brain, particularly the neural networks respon-
sible for processing and interpreting informa-
tion. DL does this by utilizing artificial neu-
rons in a computer neural network. DL finds
weights for each artificial neuron that connects
to each from one layer to another layer. Once
the number of layers is high (i.e., deep), more
complex relationships between input and
output can be modeled.2 This enables the
network to acquire more intricate represen-
tations of the data as it learns. The utilization
of a hierarchical approach enables DL models
to autonomously extract features from the data,
as opposed to depending on human-engineered
features as is customary in conventional ML
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models. DL is therefore a highly specialized
form of ML that is ideally modified for tasks
involving unstructured data, where the fea-
tures in the data may be learnable, and explo-
ration of non-linear associations in the data
can be possible (Figure 1).3,4

The main difference between ML and DL
lies in the complexity of the models and the
size of the datasets they can handle. ML
algorithms can be effective for a wide range
of tasks and can be relatively simple to train
and deploy.5–7 DL algorithms, on the other
hand, require much larger datasets and more
complex models but can achieve exceptional
performance on tasks that involve high-dimen-
sional, complex data. Unlike classical ML,
which requires pre-defined elements of interest
to analyze the data and infer a decision, DL
can automatically identify which aspects are
significant. Each neuron in DL architectures
(i.e., artificial neural networks – ANN) has a
non-linear activation function that helps it
learn complex features representative of the
provided data samples.8 Convolutional Neural
Networks (CNN) specializes in image tasks,
using convolutional layers, while ANN is a
general neural network term for various tasks.
They are mimicking the way that biological

neurons signal one another. CNN, Recurrent
Neural Networks (RNN) and ANN are differ-
ent types of neural networks that have differ-
ent strengths and weaknesses depending on
the data and the task. CNNs are good for
images or spatial data, because they can cap-
ture local features and reduce the dimensional-
ity of the data.
ML and its subset DL algorithms can be

categorized as either supervised, unsuper-
vised, or reinforcement learning based on
the input-output relationship. For example, if
output labels (outcome) are fully available, the
algorithm is called “supervised” (supervised
learning5 input data is labelled [matched to a
known output] with other words input data is
labelled for a particular output), while unsu-
pervised algorithms explore the data without
their reference standards/outcomes/labels in
the output.9. In terms of applications, both DL
and ML may be used for tasks such as classifi-
cation, regression, and clustering.
DL methods’ success depends on the avail-

ability of large-scale data, new optimization
algorithms, and the availability of Graphics
Processing Units (GPUs). These algorithms
are designed to autonomously learn and
develop as they gain experience, just as

Figure 1. Subsets of Artificial Intelligence (AI).
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humans do. As a result of DL’s powerful
representation of the data, it is considered
today’s most improved ML method, provid-
ing drastic changes in all fields of medicine
and technology, and is the driving force
behind virtually all progress in AI today.10

Multiple hidden layers, including unhidden
input and output layers, make up a typical
deep neural network. Figure 2 shows a gen-
eral structure of a deep neural network (hid-
den layer 5 N and N $ 2) compared with a
shallow network (hidden layer5 1).11

Convolutional Neural Networks (CNNs)
are predominantly employed for tasks related
to computer vision and signal processing.
CNNs can handle tasks requiring spatial rela-
tionships where the columns and rows are
fixed, such as imaging data. CNN architec-
ture encompasses a sequence of phases (lay-
ers) that facilitate the acquisition of hierar-
chical features. Initial phases (layers) extract
more local features such as corners, edges,
and lines. Later phases (layers) extract more
global features. Features are propagated
from one layer to another layer, and feature
representation becomes richer. During fea-
ture propagation from one layer to another

layer, features are added to certain nonli-
nearities and regularizations to make the
functional modeling of input-output more
generalizable. Once features become extremely
large, there are operations within the network
architecture to reduce the feature size without
losing much information, called “pooling” oper-
ations. The auto-generated and propagated fea-
tures are then utilized at the end of the network
architecture for prediction purposes (segmenta-
tion, detection, or classification). The following
is a general architecture of a convolutional neu-
ral network (CNN) (Figure 3)12:
There are various types of AI that include

analytical, functional, interactive, textual,
and visual types.

� Analytical AI has the capability of extract-
ing insights from vast amounts of data to
ultimately produce recommendations and
thus contribute to data-driven decision-
making. Today this is primarily in the
domain of business intelligence.

� Functional AI works similarly to analyti-
cal AI because it also explores massive
quantities of data for patterns and depen-
dencies, like analytical AI, but it executes

Figure 2. Convolutional Neural Networks (CNNs) ‘shallow’ versus ‘deep’.

Figure 3. ‘Pooling’ of information in propagated convolutions.
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actions rather than making recommenda-
tions. For instance, a functional AI model
could be useful in robotics to take immediate
actions.

� Interactive AI enables efficient and interactive
communication automation, essential in build-
ing chatbots and smart personal assistants.

� Textual AI typically covers textual analyt-
ics or natural language processing through
which businesses can enjoy text recogni-
tion, speech-to-text conversion, machine
translation as well as content generation
capabilities.

� Visual AI is capable of recognizing, classi-
fying, and sorting items, as well as con-
verting images and videos into insights.
Visual AI can be considered as a branch of
computer science that trains machines to
learn images and visual data in the same
manner that humans do. This sort of AI is
often used in fields such as computer
vision and augmented reality.

Turning to the specific issue of how AI
models will revolutionize morbidity and
mortality research:

1. Deep Learning for Identifying Morbidity
and Mortality Risk Factors:
� Convolutional Neural Networks (CNNs):

CNNs excel at analyzing medical images
like X-rays, CT scans, histology slides,
and ECGs. Trained on vast datasets, they
can identify subtle abnormalities asso-
ciated with increased morbidity and
mortality risk, leading to earlier diag-
noses and interventions.13

� Recurrent Neural Networks (RNNs):
RNNs excel at analyzing temporal data
like electronic health records (EHRs). By
analyzing longitudinal data points like
lab results, medication use, and clinical
notes, RNNs can identify patterns indic-
ative of future health decline and pre-
dict morbidity and mortality risk with
high accuracy.14

� Generative Adversarial Networks (GANs):
GANs can generate synthetic data that

closely resembles real-world data. This
opens doors for creating realistic sim-
ulations of disease progression and
testing potential interventions in a
virtual environment without risking
patient safety.15

2. Explainable AI (XAI) for Unveiling
Underlying Mechanisms:
� Local Interpretable Model-agnostic

Explanations (LIME): LIME helps explain
the “black box” nature of complex deep
learning models, providing insights into
how they arrive at their predictions. This
is crucial for understanding the mecha-
nisms underlying identified risk factors
and developing effective prevention and
treatment strategies.16

� SHapley Additive exPlanations (SHAP):
SHAP quantifies the contribution of indi-
vidual features to a model’s prediction.
This allows researchers to pinpoint the
most important risk factors and prioritize
them for further investigation.17

� Counterfactual Explanations: These expla-
nations explore alternative scenarios
to understand how different factors
might have influenced the predicted
outcome. This helps identify potential
interventions and assess their likely
impact on morbidity and mortality.18

3. Reinforcement Learning for Optimizing
Treatment Strategies:
� Multi-armed Bandit (MAB) algorithms:

MABs can guide treatment decisions by
dynamically adapting to patient data
in real-time. By constantly learning
from treatment outcomes, MAB algo-
rithms can optimize treatment plans
for individual patients, improving
their chances of survival and reduc-
ing morbidity.19

� Deep Q-learning: This technique can be
used to train AI agents to navigate com-
plex clinical decision-making scenarios,
considering various factors like patient
characteristics, available resources, and
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potential risks and benefits of different
treatment options. This can help health-
care providers make informed decisions
and personalize treatment plans for
optimal outcomes.20

4.Multimodal AI for Integrating Diverse
Data Sources:
� Fusion Models: These models combine

data from diverse sources like EHRs,
medical images, genomics, and wearable
devices. By integrating this multifaceted
information, fusion models can provide
a more comprehensive understanding of
disease progression and identify previ-
ously unknown risk factors and thera-
peutic targets.21

� Federated Learning: This decentralized
approach allows for the training of AI
models across multiple institutions
without sharing patient data. This
facilitates collaboration and knowl-
edge sharing while protecting patient
privacy, thereby accelerating research
advancements without compromising
ethical considerations.22

5. AI for Population Health Management:
� Predictive Modeling: AI models can

predict the future health of popula-
tions based on demographics, social
determinants of health, and other risk
factors or development of a condition
in an individual. This information
can guide public health interventions,
resource allocation, and the develop-
ment of targeted prevention programs
to reduce overall morbidity and mortal-
ity rates.23

� Disease Outbreak Prediction: AI mod-
els can analyze real-time data from vari-
ous sources, including social media,
travel patterns, and environmental fac-
tors, to predict the emergence and spread
of infectious diseases. This allows for
early warning systems and timely inter-
ventions to mitigate potential outbreaks
and save lives.24

Finally, on the strictly clinical side, Large
Language Models (LLMs) are presenting
new opportunities for physicians in arriving
at a differential diagnosis in difficult clinical
scenarios. The most recent LLM for differen-
tial diagnosis exhibited standalone perfor-
mance that exceeded that of unassisted clini-
cians (top-10 accuracy 59.1% vs. 33.6%). Use
of the LLM comparing physicians with assis-
tance from search engines and standard
medical resources continued to yield a bene-
fit (44.4%) (p 5 0.03). Furthermore, clinicians
assisted by this LLM arrived at more com-
prehensive differential lists than those with-
out its assistance.25

CONCLUSION

AI models are poised to revolutionize
research in morbidity and mortality, enabling
researchers to uncover hidden patterns, pre-
dict future health risks, and personalize treat-
ment strategies. By leveraging the power of
deep learning, explainable AI, reinforcement
learning, multimodal AI, and population
health management, we can accelerate scien-
tific progress, improve healthcare outcomes,
and allow underwriters and medical directors
to better assess the risks of applicants with
health issues.

I appreciate the review and suggestions made by Emöke
Pósán MD, Ph.D., medical director for North America of
Partners Re.
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