
MORTALITY

An Outline of a Simple, Interpretable Epigenetic
Composite Score for Mortality Prediction for
Accelerated Underwriting
James A. Mills, MS1; Jeffrey D. Long, PhD1,3; Robert A. Philibert, MD, PhD1,2

Background.—In principle, it is generally accepted that DNA
methylation measures can be used to predict mortality. However,
as of yet, no epigenetic metric has been successfully incorporated
into underwriting procedures. In part, this failure results from the
relative incompatibility of many DNA methylation measures with
conventional underwriting practices.

Objective.—To test the ability of previously established epigenetic
markers of smoking, drinking and diabetes to standard lipid-based
approaches for predicting mortality.

Method.—We constructed a series of Cox proportional hazards
models for mortality using clinical data and DNA methylation data
from 4 previously described loci from the Framingham Heart Study.

Results.—The incorporation of vital signs, standard lipid and dia-
betes laboratory assessments to a base model consisting of age and
sex only modestly increased prediction of mortality from 0.732 to
0.741 area under the curve (AUC). However, the addition of epige-
netic marker information for smoking and drinking to the base
model markedly increased prediction (AUC50.787) while the addi-
tion of epigenetic marker for diabetes increased prediction even
further (AUC50.792).

Conclusion.—These results demonstrate the potential of simple
interpretable, epigenetic models to predict mortality in a manner
compatible with standard underwriting procedures. Potentially, this
epigenetic approach using rapid methylation sensitive digital PCR
procedures that can utilize saliva or whole blood DNA would
increase prediction power even further while facilitating more accu-
rate accelerated underwriting assessments of mortality.
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The Framingham Heart Study (FHS) is one
of the nation’s premier resources for under-
standing the relationship of behaviors and
medical illness to mortality.1 In particular, the
FHS Offspring Cohort, characterized in more
than 10 waves of comprehensive medical
assessments, is well known to the Life

Insurance Industry for its value in understand-
ing the relationship of smoking, drinking, and
other lifestyle choices to cardiovascular and
cancer outcomes.2

Critically, many of the laboratory and clini-
cal assessment procedures used in the FHS
are used by underwriters to assess the
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presence or absence of conditions, such as
diabetes, that predict mortality. For example,
hemoglobin A1c (HbA1c) levels are rou-
tinely used by underwriters to determine the
presence and/or severity of diabetes while
serum lipid levels, in conjunction with other
information, are used to assess the likelihood
of coronary heart disease.3 These results and
those from clinical measures are then incor-
porated along with other information into
algorithms to rate mortal risk.
These risk classification algorithms are typ-

ically based on both the medical literature
and retrospective analyses of existing portfo-
lios.4 Because the accurate classification of
mortal risk is vital to maintain solvency,
deviations from accepted underwriting proce-
dures can introduce risk to profitability. As
such, changes to underwriting practices are
generally undertaken in increments with
intense attention given to the effects of the pro-
posed changes on predicting actual mortality.
Coincidentally, the FHS can also be used to

understand the relationship of epigenetic fac-
tors to mortality. In the 8th Exam Wave of the
Offspring Cohort, genome-wide DNA meth-
ylation data were gathered.5 Because these
participants have also been assessed with
many of the measures used in current under-
writing procedures, not only can the FHS be
used to understand the relationship of epige-
netic factors to these medical and other mor-
tality related outcomes, it can also be used to
compare the potential effectiveness of epige-
netic based metrics to conventional under-
writing procedures.
The use of epigenetics to predict mortality

is not a new concept to either the general sci-
entific or life insurance-specific literature.
Fraga and Esteller formally introduced the
concept of using epigenetics to infer age in
2007.6 In 2013, using data from the newly
introduced Illumina Infinium HumanMe-
thylation450 BeadChip (aka, 450K array)
groups led by Hannum and Horvath then
constructed the first widely used “epige-
netic clocks.”7,8 However, neither of these

algorithms was specifically devised to pre-
dict mortality. In contrast, the GrimAge
clock, introduced in 2019, was specifically
designed to predict mortality. Still, despite
the efforts of start-ups such as FOXO Life,
neither GrimAge nor a host of other clocks
have been adopted for use in general
underwriting.9,10

There are many reasons for the failure of
this technology to be embraced by the Life
Insurance Industry. The first reason is cost.
The cost to process a single sample on an
Illumina array is over $200 with sample
acquisition and data processing further
increasing cost. Second, the content of
arrays continues to evolve. Production of
the 450K chip and its immediate successor,
Infinium MethylationEpic v1.0, on which
much of the epigenetic clock literature has
been developed, has been discontinued. It is
also well known that the performance of
individual probes varies based on the ver-
sion of array. Third, because of the nature of
the arrays and the way these algorithms are
formulated, epigenetic clocks also incorpo-
rate genetic heritability in their predictions
and can suffer from racial bias, which raises
legal and ethical challenges to their use.11,12

Finally, array measurements of methylation
are not very precise with test retest differ-
ences for epigenetic age commonly exceed-
ing 5 years.13,14

However, perhaps the most telling reason
they have not gathered widespread use is
that their broad output, typically expressed
as accelerated age, is not easily integrable
with current underwriting practices. Specifi-
cally, the algorithms that underwriters use
focus on determining the presence or absence
of major lifestyle risk factors, such as smoking
or drinking, or significant medical illness to
determine risk. Although epigenetic clocks can
predict the likelihood that certain conditions
such as coronary heart disease are present,15

the informativeness of their predictions is low
and not consistent with the stringencies neces-
sary for underwriting purposes. As such, their
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output is of limited value in today’s under-
writing environment.
Conceivably, an epigenetic index that

directly assessed risk factors or conditions
could find utility in the underwriting space.
Ideally, the tool should precisely load on
critical parameters and be integrated with
both conventional and accelerated under-
writing practices.
In this communication, we provide proof

of principle for such an index. Specifically,
we construct Cox Regression models to
compare the performance of algorithms
containing epigenetic array information
from 3 loci contained in our Smoke Signa-
ture® (cg05575921) and Alcohol SignatureTM

(cg04987734 and cg02583484) assays together
with data for cg19693031, a loci that is differ-
entially methylated in diabetes, to that of a
model that uses a standard lipid-based
assessment procedures for predicting all-
cause mortality in the FHS.

METHODS

The data used in this study were obtained
from the Framingham Heart Study.2,16 The
use of these data and analytic procedures in
this study were approved by the University
of Iowa Institutional Review Board (IRB
201503802).
The clinical and epigenetic data used in

this study were extracted from a larger
dataset of 2295 individuals who partici-
pated in the 8th Examination wave of the
FHS Offspring Cohort Study. A description
of the procedures used to obtain and prepare
these data has been previously reported,17,18

with the full dataset needed for replication of
these results residing in the Data Base of
Genotypes and Phenotypes (dpGAP) main-
tained by the National Center for Biotechnol-
ogy Information (https://www.ncbi.nlm.nih.
gov/gap/).
A detailed description of the methods used

to prepare the genome-wide DNA methyla-
tion data for analysis has been previously

described.5 From this data set, we
extracted the methylation values for epi-
genetic probes (cg05575921, cg04987734,
cg02583484, cg19693031). In parallel, the
demographic and clinical data for these
subjects were also extracted from the master
data files, and then merged with the epige-
netic data to form a final dataset.
A series of Cox proportional hazards mod-

els were used to assess the performance of
the markers compared to demographic,
lipid, and vital measures for predicting all-
cause mortality.19 The metric for comparison
was the time-dependent area under the ROC
curve (AUC).20 In the estimation of AUC,
bootstrap cross validation methods were
applied, and AUC values were calculated as
an average across 100 bootstrap datasets.21

The proportional hazards assumption was
investigated, and age was treated as a time
varying covariate to account for violation of
the assumption.22

From the best fitting model, we created a
composite score using the parameter estimates
of the epigenetic measures, adjusting for age
and sex. The composite was transformed to a
z-score and quartiles of the composite z-score
were used to create risk classes. Descriptive
statistics of the risk classes were calculated,
and a Kaplan-Meier curve for each class was
created.

RESULTS

Table 1 delineates the demographic and
key laboratory characteristics of the sample.
At intake, the male (n51039; 66.2 § 8.9 yrs)
and female subjects (n51239; 66.5 § 9.0 yrs)
were all White with both sexes having
an average age in the mid-60s. Although
diastolic blood pressures were lower in
females, systolic blood pressures were simi-
lar. Both total cholesterol and high density
lipoprotein (HDL) cholesterol were higher
in females. Finally, levels of the 4 epige-
netic markers were significantly different
between the sexes with cg05575921 levels
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pointing to higher rates of smoking intensity
and cg04987734 and cg02583484 indicating
higher levels of alcohol consumption in men.
Interestingly, cg19693031 methylation indi-
cated more risk for diabetes in men despite
Hemoglobin A1c levels being similar.
Using these FHS data, Cox survival analy-

sis was run for the following 4 models: 1)
age, sex; 2) age, sex, total cholesterol, HDL
cholesterol, triglycerides, A1c, systolic blood

pressure, diastolic blood pressure; 3) age, sex,
cg05575921, cg04987734, cg02583484; and 4)
age, sex, cg05575921, cg04987734, cg02583484,
cg19693031. For each model listed in Table 2,
we have 2272 participants and 297 events.
Table 2 displays the time dependent AUC val-
ues for each model, as well as the AUC differ-
ence and confidence interval for the compari-
son to the other models at 5 years. Model 1
(age and sex) does not differ from Model 2

Table 2. Time Dependent AUC for Each Model and AUC Difference (95% CI) Between Models

Model 1 Model 2 Model 3 Model 4

Model 1: Age þ Sex 73.2

Model 2: Age þ Sex þ Lipid/Vitals 0.9 (�1.8, 2.8) 74.1

Model 3: Age þ Sex þ Epigenetic1 5.4 (2.0, 8.6) 4.6 (0.7, 8.8) 78.7

Model 4: Age þ Sex þ Epigenetic2 5.9 (2.1, 9.5) 5.0 (1.0, 9.7) 0.5 (�0.3, 1.3) 79.2

Lipid/Vitals: Total Cholesterol, HDL Cholesterol, Triglycerides, A1c, Systolic Blood Pressure, Diastolic Blood Pressure.

Epigenetic1: cg05575921, cg04987734, cg02583484.

Epigenetic2: cg05575921, cg04987734, cg02583484, cg19693031.

Table 1. Clinical and Demographic Characteristics of the FHS Cohort

Male Female
1038 1234

Age 66.2 6 8.9 66.5 6 9.0

Current smoking 75 104

Past Smoking 86 117

Vital Sign

Systolic Blood Pressure 129 6 17 mm Hg 129 6 18 mm Hg

Diastolic Blood Pressure** 75 6 11 mm Hg 73 6 10 mm Hg

Pulse

Serum Markers

Total Cholesterol** 173 6 34 mg/dl 196 6 36 mg/dl

High Density Lipoprotein Cholesterol** 49.4 6 13.9 mg/dl 64.26 18.7 mg/dl

Triglycerides 120 6 76 mg/dl 116 6 61 mg/dl

Hemoglobin A1c 5.7 6 7.6% 5.7 6 6.0%

Epigenetic Markers

cg05575921** 75.7 6 9.0% 77.0 6 7.7%

cg04987734* 38.1 6 5.0% 36.2 6 5.4%

cg02583484** 29.7 6 4.0% 29.0 6 3.9%

cg19693031** 66.0 6 5.4% 67.3 6 6.0%

* p,0.05 nominal, ** p,0.001 nominal.
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(age, sex, lipid panel, vitals), while Models 3 &
4 (age, sex, epigenetic markers) have higher
AUC values than both Models 1 & 2.
Using the parameter estimates for the epi-

genetic markers from Model 4, an epigenetic
composite score was calculated and trans-
formed to a z-score, where higher scores
correspond to increased smoking and/or
alcohol use (See Table 3). Quartiles of the
z-score distribution (Figure 1) were used to
create 3 classes (preferred: bottom 25%,
standard: middle 50%, substandard: top
25%). Age and epigenetic means and stan-
dard deviations for each class are shown in
Table 3.
Figure 2 displays the Kaplan-Meier curves

for each class. Those with the lowest z-scores
(preferred: z # -0.67) had the lowest mortal-
ity risk, and the risk increased with z-score
for the other 2 classes (standard: -0.67 , z #
0.43 & substandard z . 0.43). In terms of
hazard ratios, after adjusting for age and sex
the substandard class has a higher mortal-
ity risk than the standard (HR54.6 [1.7,
12,3]) and preferred classes (HR56.1 [1.7,
21.9]).

DISCUSSION

These data show that, in theory, a simple
genetics-free, epigenetic index can effec-
tively partition individuals into mortality
risk groups, and that this index markedly
outperforms a model constructed from a
set of laboratory measures obtained for

underwriting. This index does so by objec-
tively and effectively capturing the 2 larg-
est life behaviors for early mortality, smok-
ing and excessive drinking.
Although their derivation is more recent

and to some, more mysterious, epigenetic
assessments are very much like other
laboratory measures, such as serum cho-
lesterol levels, in that they are simply bio-
markers that can be used to predict an
outcome. The real questions for the insur-
ance industry is whether epigenetic bio-
markers can predict critical outcomes bet-
ter than existing measures and whether
they can do so in an affordable and scal-
able manner.
Although these results from the FHS sug-

gest that there is considerable promise in
epigenetic methods, there are several signif-
icant differences between the modeling
approach that we used in this study as com-
pared to actual underwriting practices.
First, given the age of the individuals in this
study and depending on the face value of
the policy, most, if not all, underwriting
assessments of these subjects would have
been considerably more extensive. Typi-
cally, most of the older subjects would have
been assessed with electrocardiograms and
both NT-proBNP and urinary cotinine
determinations.23 Second, attending physi-
cian statements would be likely required
from those with significant medical history
or evidence of disease on laboratory exami-
nation. Still, none of these clinical measures
are perfect. In actual practice, urinary cotin-
ine assessments can have high rates of false
negatives. In Palmier and colleagues 2014
examination of over 6 million life insurance
applicants, urine cotinine tests were nega-
tive for 498,426 of 938,944 (53%) of self-
reported tobacco users.24 Furthermore,
although they provide additional protective
value, both the NT-proBNP and electrocar-
diograms load on the same biological diath-
esis for heart disease as do the serum cho-
lesterol and diabetes measures. Therefore,

Table 3. Descriptive Statistics by Epigenetic Composite
Z-Score Groups

Preferred
N5568

Standard
N51136

Substandard
N5568

Age 64.3 (8.4) 66.9 (9.1) 67.4 (8.9)

cg05575921 0.82 (0.026) 0.79 (0.037) 0.66 (0.095)

cg04987734 0.34 (0.043) 0.37 (0.042) 0.40 (0.063)

cg02583484 0.32 (0.034) 0.30 (0.034) 0.27 (0.041)

cg19693031 0.69 (0.042) 0.66 (0.049) 0.65 (0.063)
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some of the information that they provide is
redundant. Therefore, it is difficult to state
exactly the degree of improvement that
would be had by engaging in these extra
assessments.
Similarly, there are also marked differ-

ences between the epigenetic measures used
in the FHS and current DNA methylation
assessment procedures. Hybridization arrays
are research tools that are known to be error
prone with error rates for methylation beta
values as high as 10% being noted for techni-
cal replicates.25 In contrast, newly developed
methylation sensitive digital PCR (MSdPCR)
and sequencing techniques are more precise
with errors rates of replicate samples of 1%
being commonly observed and no batch
effects.26,27

Given the rate of advancement of epige-
netic diagnostic tools, it is conceivable that
these MSdPCR measures, together with
commercially available tests for coronary
heart disease29 and cancer30 could sup-
plant current fluid-based assessments
used for underwriting prospective clients
similar to those found in the FHS. How-
ever, given the financial peril, any imple-
mentation of these or similar approaches
would need to be extensively evaluated
from actuarial, financial, and regulatory
perspectives.

Instead, we believe that the greatest
opportunity for epigenetics in the life
insurance industry is for assessing younger
prospective clients currently being assessed
using intensive accelerated underwriting.
Although exact numbers are not known,
there is considerable mortality slippage in
accelerated portfolios secondary to unde-
clared smoking31 while the slippage to
undisclosed excess alcohol use is completely
unknown. Because our epigenetic tests can
use saliva DNA as their testing substrate and
can be completed within a matter of hours,
by using overnight couriers and video-moni-
tored assessment procedures, it should be
possible to seamlessly incorporate epige-
netic testing procedures for these risky life-
style behaviors into current accelerated
underwriting practices. Furthermore, since
electrocardiograms and NT-proBNP are
relatively low yield in young adults and
the advent of vaping has made cotinine
determinations less valuable, it should be
possible to substitute epigenetic assess-
ments for many of the more traditional
blood-based underwriting assessments of
younger clients as well.
However, to do this rationally, it will be

necessary to first examine the predictive
value of epigenetic assessments in diverse
cohorts representative of the those being

Figure 1. Epigenetic Composite Z-Score Distribution.
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underwritten, then test the algorithm in
under actual underwriting conditions. If
successful, the resulting epigenetically
driven approach could not only facilitate
more accurate actuarial assessment but
could also lay the groundwork for the use
of epigenetics in continuous underwriting
paradigms.32
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The authors would like to express their gratitude to the
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Similarly, the use of DNA methylation to

Figure 2. Kaplan-Meier Curves by Epigenetic Composite Z-Score Groups.
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